
Empowering Browser Security for Mobile Devices
Using Smart CDNs

Benjamin Livshits and David Molnar
Microsoft Research

Abstract

There has been a great deal of attention on browser secu-
rity in recent years. However, the majority of projects in
this space have focused on security of desktop browsers,
while it is likely that it is the mobile browsers that will be
targets of security attacks in the coming years. In this pa-
per we propose the use of “smart CDNs” to quickly drive
security innovations into the mobile browser space.

1 Motivation

The mobile Web is here to stay, but the mobile Web
browser must change dramatically. The rise of “mobile-
only” Web users, the limitations of today’s wireless tech-
nology to provide peak bandwidth, pressure on battery
life, and the decreasing cost of storage point to a future
where browsing is increasingly split between the mobile
client and a location-aware “smart content distribution
network.” Such a network would have has a low-latency
connection with the mobile client and would be able to
perform some computation, with the heavy lifting left to
be done by the data center. One of the main benefits is
pushing data towards the end user, reducing latency due
to the speed of light and working around wireless band-
width limitations. This split raises new security issues and
opens a golden opportunity for researchers to drive secu-
rity innovations in mobile Web browsers.

The iPhone is the leading edge of these trends. To-
day’s entry-level iPhone comes with 8 GB of storage, has
both a 3G and a 802.11 radio, and may be periodically
synced with a PC that has close to a terabyte of storage.
iPhone usage has driven 3G data traffic to unprecedented
levels; AT&T reported that traffic in the San Francisco

Bay Area increased by 2, 000 percent, leading to many
dropped calls and a temporary suspension of iPhone sales
in the region. Subsequently AT&T announced a $65 mil-
lion upgrade to its infrastructure to accommodate these
users [1], with other mobile carriers following not far
behind. Much of this data usage is mobile Web brows-
ing, as opposed to other data use, while an increasing
amount is video [2]. Much of this content is already
served by CDNs, but without tight integration with the
client: the content distribution network Akamai pushes a
peak of 3.45 Tbps of web traffic, including bilions of re-
quests for video streams [13].

Security Research Trends. Recent mobile worms affect-
ing the Nokia/Symbian platform amply demonstrate that
mobile devices are far from impervious when it comes
to security compromises [6]. Recent trends in security
research towards merging the browser and the operating
system address such problems. Chrome’s process iso-
lation and secure extension architecture is one example,
as of course is ChromeOS. In addition to this, security
researchers have been hard at work improving the secu-
rity of traditional desktop browsers. Some examples of
security-related technologies include XSS filters, phish-
ing filters, and other end-host protection technologies re-
cently proposed in research literature such as Nozzle [16],
Ripley [17], Gatekeeper [8], AdSafe [4], Caja [15], Con-
Script [14], or URL reputation services.

Despite this rapid innovation, mobile devices rarely
benefit. The devices themselves have serious limitations
compared to desktop PCs. Even if “fat” devices such as
the iPad or Nexus One become commonly available, there
will still be a large number of less expensive devices at
lower price points with lesser capabilities. Furthermore,
software is difficult to upgrade on many mobile devices,

Data center or
server farm

sCDN Mobile devices

Figure 1: Mobile devices fill their pre-caches from sCDN middle tier
nodes, including laptops, 802.11 access points, boxes located with the
mobile carrier’s network, or other devices. The data center is the canon-
ical source of a page.

even relatively painless ones such as the iPhone. A few
shipping systems, such as the SkyFire browser or Black-
Berry, attack these limitations by splitting the browser be-
tween a thin client and a ”cloud” that performs much of
the work. For example, SkyFire can display Flash content
by pre-rendering bitmaps on its servers. The Achilles’
heel of these approaches is typically the latency incurred
due to network traffic: BlackBerry combats this with a
focus on email and enterprise-local deployment of Black-
Berry servers, but SkyFire suffers compared to unsplit
browsers. Opera Mini is another shipping system that
uses a proxy to pre-render web pages for mobile devices.

Proposal. Our proposal is to push security into a smart
content distribution network (sCDN) that runs a power-
ful — and secure — desktop browser, while leaving a thin
client on the mobile device. Recent publicly announced
numbers show that Microsoft’s sCDN serves 40% of all
content, which is estimated to rise to 60% by 2010 [3].
The specific details of the split will depend on the device,
carrier, and use cases: in this position paper we focus on
security enhancements enabled by the split.

1.1 Motivating Examples

Below we discuss two motivating examples of sCDN use.

Heap Spraying Defense. Heap spraying is a com-
monly used technique in exploits for platforms that run
JavaScript, such as Web browsers, including Internet Ex-
plorer, Firefox, and Safari. The highly publicized attacks
on Google and other companies in China allegedly in-
volved malware that used a heap spraying attack [10].
Nozzle is an end-host technology for detecting and pre-

venting these attacks [16]. While Nozzle has been suc-
cessfully applied to IE, Firefox, and Acrobat Reader, it
has not been applied to mobile browsers. Worse, mobile
platforms do not today have OS-level protections such as
address space layout randomization that would resist heap
spray attacks. While ASLR for Android has been demon-
strated, deploying it requires a software install.

Imagine a mobile browser going to http://evil.

com, a page containing a heap spraying attack. In our
scenario, we would be running a Nozzle-protected ver-
sion of the browser on the sCDN (possibly, enclosed in
a VM that is periodically refreshed). Both the mobile
browser and the sCDN-based browser will start rendering
the URL in question. Once the sCDN-based browser de-
tects a spraying attempt, it will signal to the mobile device
to stop rendering the page. Alternatively, it could reboot
the mobile device or restart its browser. If we opt for a
model in which the sCDN browser is in charge of render-
ing the contents and sending bitmaps over to the mobile
client, the chance for exploitation on the mobile device is
greatly reduced.

In the example above, one can imagine a variety of
other detection technologies such as behavior-based in-
trusion detection techniques being substituted in place of
Nozzle. New technologies can be deployed merely by up-
grading the sCDN.

Request Prediction and Bandwidth Shifting. The key
metric for a carrier is the amount of peak bandwidth re-
quired, because adding infrastructure to support higher
peak use incurs substantial capital costs (e.g. adding new
cell towers or new cables). The sCDN can provide a
pre-cache of content that is pushed opportunistically to
the mobile device based on predictions of the user’s fu-
ture requests. Each successful prediction results in shift-
ing bytes from peak bandwidth to off-peak bandwidth,
thereby smoothing the load on carrier infrastructure and
creating value for the carrier. Even better, a successful
prediction reduces latency for the user’s requests. Fig-
ure 1 shows an architecture diagram for this scenario.

2 Proposal

We propose a smart content distribution network or sCDN
to improve mobile Web browsing. A sCDN is a net-
work of servers, which may include “local” infrastructure

such as home PCs or 802.11 access points, that perform
pre-rendering and pre-caching of data for a mobile Web
browser. The server-side piece of the sCDN can run a
headless variant of a desktop Web browser specifically in-
strumented for sCDN use.

The sCDN can also pre-render the site for a particular
phone. These pre-rendered versions may also be shared
across the users (consider nytimes.com or google.

com). Because the sCDN knows about the user, including
browsing history, favorite sites, and potentially even pass-
words and deep Web material, the sCDN can then perform
predictive fetch and pre-rendering of user requests. Mo-
bile device state can be backed up on the sCDN to enable
seamless migration from one device to another.

Pre-caching can also reduce radio transmission require-
ments. The large memory on the device can simply be
updated when the device is in WiFi range, during off-
peak hours, or when plugged into a fast wired connection.
The device may not need to send requests except for rare
cases of requesting a new URL that was not predicted and
pushed to the device. The following issues present them-
selves.

• How do we manage the privacy impact of the sCDN
collaborating with the browser?

• How do we faithfully replicate a range of mobile
Web browsing environments in a distributed (virtual-
ized) environment? Working with the browser here
allows the sCDN to avoid today’s unsavory hacks
such as sniffing User-Agent strings.

• The infrastructure itself could fall a victim to a worm
that propagates through sCDN and all connected mo-
bile devices or a cache poisoning attack that affects
the common cache.

• The shared caching infrastructure can be used to
avoid paying for clicks. This emphasizes how de-
sirable it is to co-design the sCDN and the mobile
browser.

• How do we cache and authenticate dynamic content?
While static content can be easily fingerprinted and
signed by the origin, dynamic content, especially
when generated for each user, presents significant
challenges not yet overcome.

• How do we handle time-sensitive data, such as news,
that should not stay long in a cache?

While there are many left to work out, we believe the
sCDN architecture offers substantial benefits. Users

choose the sCDN for its other benefits, but receive secu-
rity “bundled in.”

The sCDN benefits from security mechanisms because
they lower support costs arising from user security inci-
dents, or because they reduce risk to the sCDN from com-
promised middle tier nodes. Solving the security issues
involved with partially trusted sCDN nodes might even
reduce the capital cost to build a sCDN by allowing the
re-use of existing equipment (e.g. home PCs).

2.1 sCDNs and Security Innovations

We see two broad classes of security innovations that par-
ticularly benefit from sCDNs. First, in-browser enforce-
ment mechanisms, such as Nozzle, StackGuard, or Ran-
domHeap, usually come with a performance cost. This
translates directly to reduced battery life on a mobile de-
vice. With a sCDN, the cost of such mechanisms is shifted
to the server instead.

The second class of mechanisms are intrusion detection
mechanisms. The key is shared data gathering: an attack
on one client of the sCDN can potentially alert all clients
of the sCDN to the danger. Examples of such mecha-
nisms include blacklists, phishing filters, URL reputation
schemes, XSS filters, and real-time intelligence on attack
propagation. An example of how this kind of collabora-
tive intelligence is helpful is stopping worm propagation
across a social networking site such as MySpace: as has
been suggested in the Spectator project [12], the ability
to observe traffic to and from a range of users will enable
correlating related requests and responses and stopping a
worm quickly.

3 Threats to the sCDN Scenario

We now describe several potential problems that could
prevent sCDNs from becoming a reality, or if they do be-
come common, could negatively affect security integra-
tion.

Capital cost. To effectively cover current 3G service
areas would require an investment in infrastructure of
the same order of magnitude as that required to con-
struct cell towers and network infrastructure. Less ob-
vious but no less important is the cost to solve the tech-
nical problems associated with rendering active content,

frequently changing content, and pushing content to the
nearest sCDN node for a user. While proposals exist in the
research community, if security mechanisms increase this
capital cost substantially, either by complicating the tech-
nical solutions or by requiring more infrastructure, they
may not be deployed.

Infrastructure dependency. This architecture creates a
dependency on the sCDN for support, maintenance, avail-
ability, and upgrades. The sCDN may also go bankrupt,
taking the user’s data with it.

Privacy. The sCDN sees all URLs queried by a user,
all search terms, and possibly all cookies and passwords.
How can we overcome this privacy issue?

Disruptive Technological Change. Finally, our assump-
tions may fail. A breakthrough in wireless technology
or battery life would remove the constraints that push to-
wards sCDNs and make the threats we have identified
more serious.

4 Related Work

The Infostations project showed how devices with in-
termittent access to fat, cheap connectivity could use
prefetched caches to support mobile operation [7]. Pre-
dicting user requests to save bandwidth also appears in
the TIERStore and DiSc projects aimed at developing re-
gions with poor WAN connectivity [5, 9]. The SONGO
work shows that search queries can be successfully pre-
dicted and cached [11]. Traditional content distribution
networks such as Akamai [13] focuses on static content,
while the SkyFire browser works with active content such
as Flash.

5 Conclusions

Smart content distribution networks (sCDNs) are an ar-
chitecture direction that enables rapid innovation in se-
curity mechanisms and fits with today’s trends in mo-
bile communication. We believe that security researchers
should seriously consider the role of sCDNs to impact the
security of the mobile Web.

References

[1] AT&T. AT&T invests nearly $65 million through 2009
to strengthen 3g wireless coverage in SF bay area, 2009.
http://www.att.com/gen/press-room?pid=4800&cdvn=

news&newsarticleid=27561.
[2] Cisco, Inc. Cisco visual networking index: Global mobile

data traffic forecast update, 2009-2014. http://www.cisco.

com/en/US/solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-520862.html, Feb. 2010.
[3] J. Cohen. Meeting microsofts content delivery needs. http:

//www.streamingmedia.com/east2009/presentations/

CDNSummit09-Keynote-Microsoft.pdf, 2009.
[4] D. Crockford. ADSafe. adsafe.org.
[5] M. Demmer, B. Dui, and E. Brewer. Tierstore: A distributed

filesystem for challenged networks in developing regions. In
USENIX Technical Conference, 2008.

[6] Fortinet, Inc. Worm:symbos/yxe. http://www.fortiguard.

com/encyclopedia/virus/symbos_yxes.a!worm.html,
Feb. 2009.

[7] R. Frenkiel, B. Badrinath, J. Borras, and R. Yates. The infostations
challenge: Balancing cost and ubiquity in delivering wireless data.
IEEE Personal Communications, 7(2):66–71, 2000.

[8] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforce-
ment of security and reliability policies for JavaScript code. In
Proceedings of the Usenix Security Symposium, Aug. 2009.

[9] R. Honicky and E. L. Miller. Replication under scalable hashing:
A family of algorithms for scalable decentralized data distribution.
In Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

[10] J. Kelley. How Google was pwned: In-depth look into the
aurora attacks. http://www.slideshare.net/NEOISF/

how-google-was-pwned-indepth-look-into-the-aurora-attacks,
2010.

[11] E. Koukoumidis, D. Lymberopoulos, J. Liue, and D. Burger. Im-
proving mobile search experience with SONGO, 2010. MSR TR
2010-15.

[12] B. Livshits and W. Cui. Spectator: Detection and containment of
JavaScript worms. In Proceedings of the Usenix Annual Technical
Conference, July 2008.

[13] O. Malik. Akamais network now pushes terabits of data
every second, 2009. http://gigaom.com/2010/04/11/

akamai-3-4-terabits/.
[14] L. Meyerovich and B. Livshits. ConScript: Specifying and enforc-

ing fine-grained security policies for Javascript in the browser. In
IEEE Symposium on Security and Privacy, May 2010.

[15] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja - safe active content in sanitized JavaScript, October
2007. http://google-caja.googlecode.com/files/caja-spec-2007-10-
11.pdf.

[16] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense
against heap-spraying code injection attacks. In Proceedings of the
Usenix Security Symposium, Aug. 2009.

[17] K. Vikram, A. Prateek, and B. Livshits. Ripley: Automatically se-
curing distributed Web applications through replicated execution.
In Conference on Computer and Communications Security, Oct.
2009.

